RNA-dependent recruitment of the origin recognition complex.
نویسندگان
چکیده
The origin recognition complex (ORC) has an important function in determining the initiation sites of DNA replication. In higher eukaryotes, ORC lacks sequence-specific DNA binding, and the mechanisms of ORC recruitment and origin determination are poorly understood. ORC is recruited with high efficiency to the Epstein-Barr virus origin of plasmid replication (OriP) through a complex mechanism involving interactions with the virus-encoded EBNA1 protein. We present evidence that ORC recruitment to OriP and DNA replication function depends on RGG-like motifs, referred to as LR1 and LR2, in the EBNA1 amino-terminal domain. Moreover, we show that LR1 and LR2 recruitment of ORC is RNA dependent. HMGA1a, which can functionally substitute for LR1 and LR2 domain, can also recruit ORC in an RNA-dependent manner. EBNA1 and HMGA1a RGG motifs bound to structured G-rich RNA, as did ORC1 peptides, which interact with EBNA1. RNase A treatment of cellular chromatin released a fraction of the total ORC, suggesting that ORC association with chromatin, and possibly cellular origins, is stabilized by RNA. We propose that structural RNA molecules mediate ORC recruitment at some cellular and viral origins, similar to OriP.
منابع مشابه
Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1.
Poly(ADP-ribose) polymerase (PARP) is an abundant, chromatin-associated, NAD-dependent enzyme that functions in multiple chromosomal processes, including DNA replication and chromatin remodeling. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) is a dynamic genetic element that confers stable episome maintenance, DNA replication initiation, and chromatin organization functions....
متن کاملThe Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication
The initiation of eukaryotic DNA replication involves origin recruitment and activation of the MCM2-7 complex, the putative replicative helicase. Mini-chromosome maintenance (MCM)2-7 recruitment to origins in G1 requires origin recognition complex (ORC), Cdt1, and Cdc6, and activation at G1/S requires MCM10 and the protein kinases Cdc7 and S-Cdk, which together recruit Cdc45, a putative MCM2-7 ...
متن کاملAssociation of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases.
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. Howev...
متن کاملPrereplicative complexes assembled in vitro support origin-dependent and independent DNA replication
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of "firi...
متن کاملRNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases
For transcription through chromatin, RNA polymerase (Pol) II associates with elongation factors (EFs). Here we show that many EFs crosslink to RNA emerging from transcribing Pol II in the yeast Saccharomyces cerevisiae. Most EFs crosslink preferentially to mRNAs, rather than unstable non-coding RNAs. RNA contributes to chromatin association of many EFs, including the Pol II serine 2 kinases Ctk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 27 22 شماره
صفحات -
تاریخ انتشار 2008